Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Aihua Zheng, Jing Xu and Yang-Gen Hu*

Department of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China

Correspondence e-mail:
huyangg111@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.048$
$w R$ factor $=0.138$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-Cyclohexylamino-5,6-dimethyl-3-phenyl-3H-thieno[2,3-d]pyrimidin-4(3H)-one

Molecules of the title compound, $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OS}$, form a supramolecular structure via intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Derivatives of thienopyrimidine are of great importance because of their biological properties (Ding et al., 2004). We have recently focused our attention on the synthesis of heterocyclic systems containing a fused pyrimidinone ring using the aza-Wittig reaction (Hu et al., 2005). The title compound, (I), may be used as a new precursor to obtain bioactive molecules. Its structure is reported here (Fig. 1).

(II)
(I)

The bond lengths and angles are unexceptional. The two fused rings are essentially coplanar (Table 1), with maximum deviations of 0.056 (2) and -0.042 (2) \AA for C 7 and S 1 , respectively. The dihedral angle between the C15-C20 phenyl ring and the thienopyrimidinone system is $89.00(1)^{\circ}$. The cyclohexyl ring adopts a distorted chair conformation $[\varphi=$ $356.64(2)^{\circ}$ and $\theta=2.53(2)^{\circ}$, and puckering amplitude $=$ 0.575 (2) Å; Cremer \& Pople, 1975].

Figure 1
View of the molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 3 July 2006
Accepted 2 August 2006

The crystal structure is stabilized by intermolecular C$\mathrm{H} \cdots \pi$ interactions (Fig. 2 and Table 2)

Experimental

To a solution of (II) (3 mmol) in dichloromethane (15 ml) was added cyclohexylamine (3 mmol). The reaction mixture was allowed to stand for 2 h ; the solvent was then removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 5 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound. (I) was recrystallized from ethanol-dichloromethane ($1: 2 \mathrm{v} / \mathrm{v}$) at room temperature, yielding crystals suitable for single-crystal X-ray diffraction.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OS}$
$M_{r}=353.47$
Triclinic, $P \overline{1}$
$a=8.813$ (3) \AA 。
$b=10.064$ (3) Å
$c=11.526(3) \AA$
$\alpha=100.522(5)^{\circ}$
$\beta=99.819(5)^{\circ}$
$\gamma=107.060(5)^{\circ}$

Data collection

Bruker SMART 4K CCD areadetector diffractometer

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2003)

$$
T_{\min }=0.964, T_{\max }=0.982
$$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.138$
$S=1.04$
3794 reflections
228 parameters
H-atom parameters constrained
$V=933.1(5) \AA^{3}$
$Z=2$
$D_{x}=1.258 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless
$0.20 \times 0.20 \times 0.10 \mathrm{~mm}$

5533 measured reflections 3794 independent reflections 3111 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=26.5^{\circ}$

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0835 P)^{2}\right. \\
\quad+0.0173 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.004 \\
\Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected torsion angles (${ }^{\circ}$).

$\mathrm{S} 1-\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 7$	$179.00(11)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1-\mathrm{C} 13$	$-177.06(14)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).
$C g 1$ is the centroid of the ring $\mathrm{S} 1, \mathrm{C} 8, \mathrm{C} 19, \mathrm{C} 11, \mathrm{C} 13 ; C g 2$ is the centroid of the ring N2,N3,C7-C10.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots C g 2^{\mathrm{i}}$	0.98	2.88	$3.62(2)$	133
$\mathrm{C} 2-\mathrm{H} 2 A \cdots C g 1^{\mathrm{i}}$	0.97	2.68	$3.56(2)$	151
${\mathrm{C} 20-\mathrm{H} 20 \cdots \mathrm{Cg} 2^{\mathrm{ii}}}^{2}$	0.93	2.77	$3.58(2)$	147

Symmetry codes: (i) $-x+1,-y,-z+2$; (ii) $-x,-y,-z+2$.

Figure 2
A view of the $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen-bond stacking interactions (dashed lines).

All H atoms were located in difference maps and treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), $0.96\left(\mathrm{CH}_{3}\right), 0.97\left(\mathrm{CH}_{2}\right)$ and $0.98 \AA(\mathrm{CH})$, and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

We gratefully acknowledge financial support of this work by the Key Science Research Project of Hubei Provincial Department of Education (No. D200524005).

References

Bruker (2001). SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Ding, M. W., Xu, S. Z. \& Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.
Hu, Y.-G., Li, G.-H., Tian, J.-H., Ding, M.-W. \& He, H.-W. (2005). Acta Cryst. E61, o3266-o3268.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany
Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

